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Part 2. Partially contaminated interfaces 
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We consider the flow driven by a thermally induced surface stress in a fluid held in 
a shallow two-dimensional slot, and show that, for low Maragoni number, the extent 
of surface stagnation due to the presence of a non-diffusing surfactant depends on 
a single parameter E, the elasticity number defined in Part 1 of this analysis (Homsy 
& Meiburg 1984). For situations in which the adsorbed species are insufficient to result 
in a fully covered surface, we find that the interface is either clean and subject to 
constant stress, or contaminated and no-slip. There is a region in which one type of 
surface is replaced by the other. The Wiener-Hopf technique is used to obtain an 
analytic expression for the stream function in the vicinity of the leading edge of the 
stagnant surface in the limit of creeping flow. This result shows that the flow dies 
off under the stagnant surface at a distance of the order of the depth of the fluid, 
in a series of vortices of exponentially decreasing magnitude. 

1. Introduction 
The temperature dependence of the tension in an interface between two bulk fluids 

causes a surface stress when the interface is subject to tangential thermal gradients. 
Viscous balancing of this stress results in bulk fluid flow, a phenomenon termed 
thermocapillary convection. Flows driven by thermodynamically induced surface 
stress have been reviewed by Kenning (1968) and by Levich & Krylov (1969). In  
general, the flow driven by arbitrary thermal conditions in a fluid domain possessing 
free surfaces will be due to a combination of buoyancy and thermocapillary effects, 
but thermocapillary forces will be dominant when gravity is negligible, as in problems 
of small scale or in microgravity environments. Ostrach (1982) has discussed the 
importance of thermocapillary convection in the microgravity environment of space, 
and its role in projected space-based material-processing applications. Because the 
character of convection within the melt largely determines the quality of crystals 
grown from melts (an issue reviewed in detail by Hurle 1983, principally in reference 
to Czochralski crystal growth), an understanding of thermocapillary flow is essential 
in assessing the potential of crystal growth in a microgravity environment. 

Advances in the understanding of the basic states and stability characteristics of 
thermocapillary flows have been slow because the physical phenomenon is complex, 
involving coupled flow and temperature fields in what is often a mathematically 
inconvenient domain determined in part by a free surface. These difficulties tax 
analytical methods, which have required the introduction of several simplifications. 
Flows of vanishing depth allow the approximations of lubrication theory, as in Yih 
(1969). For flows of small but finite depth, the lubrication approximations are valid 
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except in boundary layers near the end walls, where the streamlines close. Sen t Davis 
(1982) have used this approach to examine the flow driven by a constant temperature 
difference imposed between the endwalls of a shallow, two-dimensional channel. They 
obtain additional simplification by neglecting convective terms in the momentum and 
energy equations and by assuming the scale of surface deflection, the capillary 
number, to be very small. More complex problems evidently must be solved 
numerically (see for example Clark 8z Wilcox 1980; Strani, Piva & Graziani 1983; 
Zebib, Homsy & Meiburg 1984). 

An important aspect of thermocapillary convection in problems of practical 
interest is the presence of surface-active species, whereby thermally induced stresses 
may be modified by concentration gradients determined by a mass-transport problem 
coupled with the temperature and velocity fields. This is a difficult analysis in the 
general case, involving interphase mass transfer and the possible precipitation of new, 
distinct phases where convection creates critical surfactant concentrations. Homsy 
& Meiburg (1984) (hereinafter referred to as HM) extended the analysis of Sen & Davis 
to consider the presence of a fixed quantity of surfactant, simplifying the maas- 
transport problem by assuming the surfactant to be insoluble in the bulk-fluid phases. 
This might reasonably be expected in crystal-growth problems, where bulk-phase 
impurities are in very low concentration. They define two dimensionless parameters 
which determine the influence of an insoluble surfactant on thermocapillary con- 
vection: the reciprocal dimensionless diffusivity, a surface PBclet number; and an 
elasticity number E scaling the relative dependence of surface tension on compositional 
and thermal variations. They then solve for the flow in the ‘core’ region, where 
lubrication theory may be applied, of a shallow, bounded two-dimensional channel, 
asymptotically and numerically for a range of values of the parameters E and Pe. 
Their method of solution combines the surfactant continuity equation and an 
expression for the surface tangential stress balance valid in the core region, forming 
an integral equation for the surface speed. This approach gives a solution of some 
generality, but requires that the lubrication approximation remains valid away from 
the endwalls of the channel, and cannot be used to solve problems when lubrication 
theory breaks down in the central region of the channel. The breakdown is anticipated 
when the surfactant distribution forms a region of stagnant surface extending into 
the channel, forcing Streamlines to turn in the central region of the channel. As 
convection must dominate the surfactant continuity equation in order that this 
strong non-uniformity of surfactant distribution be maintained, the formation of 
stagnant surfaoe regions is evidently a large-PBclet-number phenomenon. 

The numerical calculations of HM covered a limited range of parameters, and led 
to the conclusion that separate regions of clean surface and surfactant-contaminated 
stagnant surface would not form for this class of flows. However, we shall show here 
that this conclusion is misleading, as it requires that sufficient surfactant be present 
to form a concentration gradient counteracting the thermally induced stress over the 
entire interface. If this is not the case then the separate regions will form. One of the 
objectives of the present paper is to examine more closely the formation of stagnant 
surface regions in surfactant-contaminated thermocapillary flow. We consider the 
case of infinite surface PBclet number and determine the range of values of the 
elasticity number for which mixed boundary conditions of stagnant and mobile 
surface are obtained, and present an analytic solution to the resulting thermocapillary 
problem for an asymptotically shallow channel. The mixed boundary case is of 
particular interest as it offers a thermocapillary analogy to the well-studied problem 
of flow past surfactant-contaminated drops, where the anticipated formation of a 
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FIGURE 1.  Thermocapillary flow driven in a two-dimensional channel by an imposed temperature 
gradient. The horizontal boundaries are insulated. The point x = x, marks the transition from 
mobile to stagnant surface. 

stagnant cap of surfactant on the surface of the drop at high P6clet number has been 
confirmed by the success of the mixed boundary model in predicting the rise velocities 
of these drops (Davis & Acrivos 1966). 

2. Formulation 
The system we will consider is that of HM, as sketched in figure 1 .  Across a 

two-dimensional channel of depth 2d and length 21, containing a Newtonian liquid 
with constant physical properties (viscosity p, density p,  thermal conductivity k, and 
thermal diffusivity a), a temperature gradient is maintained by the fixed temperatures 
TH and T, of the solid vertical boundaries of the channel. The lower boundary is a solid 
insulating surface. The fluid above the channel is a gas of negligible viscosity and 
conductivity and therefore will not influence the flow and temperature fields in the 
liquid, as neither heat nor momentum can be transferred across the upper surface. 

It remains to characterize the gas-liquid surface. We assume the surfactant to exist 
on the surface as an ideal film, with the following equation of state describing the 
dependence of surface tension u on temperature T and concentration c : 

u = CT,-~T(T-T,)-RCT. (2.1)  

The constants appearing here are: R, a gas constant; T,, equal to +(Tc + TH) ; yT, the 
coefficient in the linear relation between the tension of the clean surface and the 
temperature, obtainable from an expression like the Ramsay-Shields correlation 
(Adamson 1982); and urn, the tension of the clean surface at temperature T,. This 
choice of an equation of state is one of many possible, and the equation is of course 
only approximately valid over any interval of temperature and concentration. See 
Gaines (1966) for a discussion of equations of state for surface films. 

We will impose restrictions on parameters appearing in the dimensionless equation 
of state. This equation is: 

U =  l-CT-CR* ( T + -  3 C. (2.2) 

Here AT = T,-T, is the imposed temperature difference, C = yT AT/a,  is the 
capillary number, and R* = Rc,/yT is a dimensionless gas constant. R* is in general 
a small number, as can be seen from an examination of typical values: 
R x 10 N m/K mol, c, x lo-' mol/m2, yT x When we 
make the reasonable assumption that the mean absolute temper&ure is much larger 

N/mK, so R* - 
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than the imposed difference, we obtain R*(T+ T,/AT) N R*T,/AT = E ,  the elasti- 
city number of HM. The dimensionless equation of state we obtain for small R* and 
large T,/AT is therefore 

V =  1-CT-Ec. (2.3) 

The material behaviour embodied by (2.3) may of course also be used for non-gaseous 
surface films which admit a local linearization of the a(c ,  T )  relationship. 

As in HM, we refer the dimensional variables in our problem to the following 
characteristic scales : 

X* N 1,  y* N d ,  C* - c,, T*-T, N AT, 

YT AT p* N - YT AT d2 u * - - -  Y T  AT v*--- 
/I 1' p 12' d '  

We define c ,  as the mean surfactant concentration. 
Introduction of this lubrication-type scaling gives the dimensionless continuity, 

momentum and energy equations, in the absence of gravity, and neglecting viscous 
heat generation : 

u,+v, = 0; (2.4) 

RA(uu, + VV, )  = - p ,  +A%,, + u,, ; 

RA'(uv, + w,) = - p ,  + A'( A'V,, + v,,) ; 
( 2 . 5 ~ )  

(2.5b) 

MA(uT, + vT,) = A'T,, + T,,. (2.6) 

The parameters appearing here are : 

R =  A ATdp (Reynolds number); 
P2 

(Marangoni number); 
yTAATd 

Pa 
M =  

d 
1 

A = - (aspect ratio). 

We will neglect convective terms of these equations everywhere in our analysis; to 
the order of approximation we will consider, this requires R,  M - O(A).  

The free-surface boundary conditions take on a complex form with the deformable 
surface, but for small aspect ratio and very small capillary number considerable 
simplification is possible. For our purposes, the following set will suffice for the 
conditions applied at surface y = 1 : 

U ,  = -T,-Ec,; Ty = 0; (2.7a, b )  

(2.7c, d ,  e )  

These equations are the surface tangential-stress balance, the surface heat balance 
(neglecting the contribution of surface work), the continuity equation for a non- 
diffusing surfactant, a conservation requirement on the surfactant, and a kinematic 
condition. Derivation of the free-surface boundary conditions is given in full detail 
by Sen & Davis and HM. 
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The remaining boundary conditions are straightforward : 

u = v = O ,  T = T 1  ( ~ = + 1 ) ;  (2.8a, b)  

u = v = O  Tv=O (y=-l). (2.8c, d )  

Our problem is to solve (2.4)-(2.6) subject to the boundary conditions (2.7u-c), 
(2 .8a-d) ,  for small aspect ratio. We will find that the lubrication-scaled problem 
admits a uniformly valid solution at leading order for the temperature, but fails to 
yield a uniformly valid solution for the flow field. We will then examine the boundary 
layer associated with the formation of a stagnant surface region, and find a solution 
valid throughout the central region of the channel. 

3. Core solutions 
The flow field is more conveniently found by introducing the conventional stream 

function $, where u = $v and v = -$z. We seek solutions for the unknowns 
$(z, y), T ( z ,  y) and c ( z )  in the form of expansions in powers of A : 

$ = $o+O(A); T = T,+O(A);  c = c,+O(A).  

The leading-order problem is : 

(3.la, b)  

$o=$o,=o; T,= T l  (z= fl); (3.2a, b )  

$0 = ?boy = 0; To, = 0 (y = -1) ;  

O\ 
$0, , + To, + Ecoz = 

(3.3a, b )  

( 3 . 4 4  

(3.4b) 

(3.4c) 

(3 .4d)  

(Y = 1); 
To, = 0 

d - & ($0, co) = 0 

$0 = 0 

J;, C o &  = 2.  (3.4e) 

The solution for To is T, = -2, as in Sen & Davis. This solution satisfies all the 

The surfactant-continuity equation ( 3 . 4 ~ )  may be written aa 
appropriate boundary conditions and hence is uniformly valid in the channel. 

ll'0,CO = 0 (Y = 1) (3.5) 

because there is no flux of surfactant through the channel. This expression requires 
that either $ou or co be equal to zero at all points on the surface; both cannot equal 
zero over any finite length without contradicting the tangential-stress balance, ( 3 . 4 ~ ) .  
Equation (3.5) evidently requires that all the surfactant exist on a stagnant surface 
region. This region must be continuous, for, if separate stagnant regions existed, the 
surface motion between them would pull them ;together. We therefore require that 
the surfactant exist in a stagnant region between the cold endwall at x = 1 and a 
point as yet unknown, x = xc; refer to figure 1. The tangential-stress balance ( 3 . 4 ~ )  
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and the surfactant-continuity equation (3.5) may now be combined into conditions 
applicable on distinct regions on the surface, substituting T, = - x :  

$ouu-l = 0;  c, = 0 ( x  < x , ) ;  (3.6a, b )  

$oyy- 1 +EcOz = 0;  $ou = 0 ( X  > x, ) .  (3.6c, d )  

We assume that x = x ,  is far from the endwalls of the channel. We must locate x = x, 
by solving the problems posed by (3.la), (3.2a, b), (3.3a, b ) ,  (3 .44 e), (3.6a-d) and 
matching the results with boundary-layer solutions valid near x = 2,. The fact that 
co = 0 for x < x ,  has the consequence that far from the influence of the stagnant 
surface, i.e. for - 1 < x 4 x,, we recover the problem of Sen & Davis, and we may 
appeal to their solution of the boundary-layer problem near x = - 1  without 
duplicating their numerical solution. 

A solution for $o satisfying (3.la), (3.2a, b), (3.3a,b), (3 .44 ,  (3.6d) is $ = $R = 0. 
This solution for $, is valid in the region x ,  6 x < 1, the region covered by stagnant 
surface, away from the leading edge. Note that, since the fluid is stagnant under the 
surfactant-covered surface, no boundary layer associated with a turning flow exists 
near the cold wall. In the stagnant region, the tangential-stress balance gives 

The constant cb is the correction to co arising from non-zero viscous stress in the 
boundary layer. We will show in the next section that this correction is an O(A)  
quantity. 

The other core solution for $o is the Sen & Davis core solution, 

$ o = $ L = Q ( Y + 1 ) ( Y 2 - - 1 ) 7  

which satisfies the boundary conditions on the clean interface. This solution must 
be matched to solutions for the boundary-layer regions of turning flow near the hot 
endwall and near the leading edge of the stagnant surface. The details of the flow 
structure near the hot endwall are not important to our present purpose, and we refer 
the reader to Sen & Davis for this analysis. 

4. Solution near x = x ,  

We introduce the rescaled coordinates ( = ( x - x , ) / A ,  7 = y in order to analyse the 
flow near x = 2,. We require that the boundary-layer solutions be consistent with the 
outer solutions of the previous section, in the appropriate limits, and therefore seek 
our solutions in the form of expansions in powers of A :  

The uniformly valid solution T, = -5, obtained in the previous section, in local 
coordinates becomes = - x ,  - A ( .  Our system for the unknowns Go and 2, is: 

(4.3a) 

(4.3b) 

(4 .34 
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lim to = 0, 

lim Go = +L, 

lim 8, = cb, 

lim f, = +R. 

5+- W 5-w 

&-00 5+W 

(4.4a, b)  

(4.5a, b )  

Again, the reader is referred to HM for the development of these equations. 
Equation ( 4 . 3 ~ )  is simply the leading-order tangentiel-stress balance ; the balance at 
the next order, (4.3b), provides the required condition on Go. 

is determined by (4.3b, c), 
with the solution 

e, = 0 (5 < O ) ,  ( 4 . 6 ~ )  

The solution for E, is 6, = c, = 0. At the next order, 

(4.6b) 

This solution requires lo,, = 0 for 6 > 0. The boundary conditions on $o from the 

f o ,  = 1 ( E <  01, ( 4 . 7 ~ )  

G o 7  = 0 ( E >  0). (4.7b) 

The complete problem for fo is given by (4.1), (4.2a, b, c), (4.5a, b) and the two above 
conditions. 

We solve for IFo with the Wiener-Hopf technique in an analysis similar to that of 
Richardson (1970) for the stick-slip problem of a plane jet at  low Reynolds number 
with large surface tension. Our result is an analytic solution in the form of two 
eigenfunction expansions, one valid for f < 0, the other for f > 0. 

tangential-stress balance and surfactant continuity are now 

W e-iPn 5 
( f  < 0) 

f o ( E J ? ,  = &13+72-7-1)+ E 
n- 1 B+@n)P2,(2 cosh~n-2)  

1. ( 4 . 8 ~ )  
(2pn + 2 sinhp,) [q  sinhp, cosh (p, q )  - cosh p, sinh (p, q ) ]  
+ (2p-2 sinhp,) [sinhp, cosh (p, 7) - (7 coshp, sinh (p, 7)] 

(E ' 0) 

Go(Et7) = ;z n x - 1 rn B-(rn) [ 1 1 e-irnE sinh r ,  cosh ( r ,  7) -7 cosh r ,  sinh ( T ,  7) 
1 + cosh 2r, 

1 a, e-i%E 7 sinh qn cosh (q, q )  - cosh qn sinh (q, q )  1. (4.8b) [ 1 -cash 2q, n - 1 qn B-(qn) 
+2 z 

In  these expressions we define two product functions : 
W 

. (4.9b) 

n - 1  n - i  

where a,, az, ... are the ordered roots of the equation a-sinha = 0 in the upper 
right quadrant of the complex plane, and p1,/3z, ... are the ordered roots of 
f + 1 - cosh /3 = 0 in the upper right quadrant. 

The eigenvalues p,, q,, and r ,  have the following definitions : 

p n  = @n, -+zn; qn = -+n, f E n ;  Tn = - h n ,  5,. 
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1 1 -  
O 7  

- 1  

n 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

- 
- 
- 

- 

- - 
- - 

I I 1 1 I 

an 
2.77 + 7.5oi 
3.35 + 13.9i 
3.72+20.23 
3.98 +20.6i 
4.19 + 32.9i 
4.37 + 39.2i 
4.51 +45.4i 
4.64 + 51.7i 
4.76 + 58.Oi 
4.86+64.33 

Y n  
2.25+4.21i 
3.10+ 10.7i 
3.55+17.li 
3.86 +23.4i 
4.09+29.7i 
4.28 + 36.0i 
4.44+42.3i 
4.58+48.6i 
4.70 + 54.4i 
4.81 +61.23 

TABLE 1. Numerical values of the first ten eigenvalues 

I t  I I I I I I 

Here yl, ye, . . . are the ordered roots of y + sinh y = 0 in the upper right quadrant. 
The fist ten roots of a a - sinh a = 0 and of y + sinh y = 0 are given in table 1. The 
roots of a a-sinh a = 0 agree with the values reported by Hillman & Salzer (1943). 
We are unaware of any published values for the roots of y+sinhy = 0. Following 
Hardy (1902), the asymptotic forms for a, and yn are easily shown to be 

Re (a,) - log, (4n+ 1) n, Im(a,) - (2n++) n, 

Re (y,) - log, (4n- 1) n, Im(y,) - (2n-+) n. 
In  order to compute numerical values of the stream function, we truncate the 

expansion at a finite number of terms, chosen so that the remaining terms are 
numerically insignificant. The product functions B+( * ) and B-( ) are evaluated using 
the first 200 terms, and the expansions for f o  are evaluated to a maximum of 50 terms. 
The stream function near x = x, computed in this way is plotted in figure 2. We see 
in this figure that the solution does satisfy the required matching conditions, 
approaching the Sen & Davis core-region solution as E-+ - 00, and approaching E 0 
for &+m. An interesting feature of the solution is the appearance of a series of vortices 
under the stagnant surface, shown in logarithmic scale in figure 3. 

We note that these vortices are in accord with (4.8b) and the occurrence of complex 
eigenvalues, the smallest of which has a real part which is O(1). Thus the strength 
of the circulation under the stagnant surface falls of exponentially with x, with 
characteristic scale A, indicating that the turning flow takes place in a distance of 
the order of the depth of the layer. 
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FIQURE 3. Exponentially decreasing vortices (shown in log scale) under the 
stagnant surface, near the edge of the stagnant surface. 

5 

Ei., 

0 1 2 3 4 5 
5 

FIQURE 4. Surface concentration of the non-diffusing surfactant, 
near the edge of the stagnant surface. 

With the solution for #owe can use (4.6b) to calculate 8,. The integral of the viscous 
stress is evaluated analytically termwise with a maximum of 100 terms in each series. 
The surfactant surface concentration near x = x, is plotted in figure 4. The viscous 
contribution to the surfactant gradient dies off rapidly from the leading edge, and 
represents only an O(A) correction to the uniform solution for the surfactant 
concentration, cou = ( l / E ) A t  = (x-x,)/E. We now may determine x, by integrating 
from x = 2, to x = 1, using the surfactant-conservation condition (3.4e) to obtain 

x, = 1-2Ek (4.10) 

We see that, for E > 1, no solution exists within the range of x. This case corresponds 
to a situation in which the total surfactant present is sufficient to form a gradient 
balancing a given thermal gradient over the full length of the channel, stagnating 
the entire surface. For values of E in the range 0 < E < 1, this expression gives values 
of x, within the range of x, indicating the formation of stagnant regions on the free 
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interface. This simple dependence of the extent of the stagnant region upon the 
elasticity number is due to the fact that, in the conduction-dominated problem, the 
temperature gradient along the stagnant surface is fixed, independent of the value 
of x,. 

5. Discussion 
This work examines the influence of a non-diffusing, insoluble surfactant on 

thermocapillary flow. The influence of a surfactant is determined in general by its 
transport behaviour, characterized by a surface PBclet number Pe and by its effect 
on the local surface tension as described by some equation of state for the surface. 
With the simplifying assumptions that the surfactant exists as an ideal gaseous film, 
and that the temperature variation is small, this effect can be characterized by a single 
parameter, E, the elasticity number. Thus when Pe is fixed at infinity, as in our 
analysis, the transport problem is set in the sense that the surfactant must exist in 
a stagnant surface region. The role of E, or of the multiple parameters that might 
describe the compositional dependence of surface tension in a more complicated 
model, is to determine the extent of the stagnant-surface region. In  this work we 
assume the temperature field to be conduction dominated, with the result that the 
stagnant surface grows simply as I& until for E = 1 the entire surface becomes 
stagnant. Our analysis complements the result of HM, who found in the limit Pe+ 00 

an expression for the speed of the free surface 

u, = Pe (2) x + E  

which gives uniform stagnation as Pe+ 00 unless E is in the range of x ,  where the 
expression is singular for some x = E. We see that a value of E in the range of x is 
the condition for the existence of a stagnant surface of partial extent, for which our 
analysis applies. The unlikely case of E < 0 will arise for a surfactant which increases 
surface tension; in this case the stagnant surface will be found against the hot 
boundary of the channel. Thus some region of partial stagnation can be found for 
all cases in which the HM solution is singular, except for the senseless E = 0 case 
corresponding to zero total surfactant. 

The solution for the stream function in the low-Reynolds-number limit, obtained 
by the Wiener-Hopf technique, shows that viscous stress contributes only O(A)  terms 
to the surfactant concentration, and that the flow under the stagnant interface dies 
off in an O(A) distance from the leading edge of the stagnant interface in a series of 
vortices of exponentially decreasing magnitude. The result (4.10) for the location of 
the leading edge of the stagnant surface in the thin channel is independent, at leading 
order, of the flow field, hence valid for R - O ( l ) ,  and does not require the R - O(A) 
assumption made in the solution of the leading-order flow field. The extent of surface 
stagnation to leading order does depend on the Marangoni number, because the 
introduction of convective terms into the energy equation changes the temperature 
field in the channel (Zebib et al. 1984). Since the extent of surface stagnation is 
essentially determined by the balance of thermal and compositional contributions to 
the surface stress, for large Marangoni number the extent of stagnation and the 
temperature field will be coupled problems: the extent of stagnation influences the 
role of convection in the thermal problem, and convection in the thermal problem 
changes the temperature gradient on the stagnant surface. However, as the extent 
of stagnant surface approaches the full length of the channel, the temperature 
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gradient in the stagnant region clearly approaches the gradient of the low-Marangoni- 
number solution, and the condition E 2 1 will give uniform surface stagnation for 
arbitrary Marangoni or Reynolds numbers. Of course, in this case the Marangoni and 
Reynolds numbers lose their relevance as transport scales, because the characteristic 
velocity used in their definitions is no longer appropriate. 

In  this analysis we have assumed the surfactant to have zero diffusivity. The results 
we obtained for the mobile- and stagnant-core regions correspond to the leading 
terms in double expansions of the solutions of the large-Pdclet-number problem for 
these two regions, in powers of the aspect ratio and inverse powers of the PBclet 
number. The O ( l / P e )  correction to the stream function in the stagnant-core region 
may be obtained by inserting the leading-order surfactant solution into the sur- 
factant continuity equation, which reads 

and using the resulting expression as the additional boundary condition on $, giving 

in the stagnant core region. The O( 1/Pe) correction to the surfactant solution in the 
mobile-core region, determined in a similar manner, is identically zero. 

Additional boundary layers appear in the finite-Pdclet-number problem, as no-flux 
boundary conditions must be satisfied by the surfactant solution, and surfactant 
diffusion must be balanced by convection at leading order in an O(l /Pe )  boundary 
layer near x=xc .  For sufficiently large Pdclet number (i.e. for 1/Pe < A) the 
boundary layers in the surfactant solution can be shown to have a simple exponential 
form, but away from this limit the surfactant boundary layers couple with the flow 
field near the regions of turning flow, and a more complex structure may be 
anticipated. 

We wish to acknowledge partial support of NASA through contract NAS8-33881. 
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